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Complex Zeros 
of the Jonquiere or Polylogarithm Function 

By B. Fornberg and K. S. Kolbig 

Abstract. Complex zero trajectories of the function 

00 xk 

F(x, s) = s 
k=l kS 

are investigated for real x with lxl < 1 in the complex s-plane. It becomes apparent that 

there exist several classes of such trajectories, depending on their behaviour for lxl -- 1. 

In particular, trajectories are found which tend towards the zeros of the Riemann zeta 

function v(s) as x -+ -1, and approach these zeros closely as x -- 1 - p for small but 

finite p > 0. However, the latter trajectories appear to descend to the point s = 1 as 

p -+ 0. Both, for x -- -1 and x -+ 1, there are trajectories which do not tend towards 

zeros of p(s). The asymptotic behaviour of the trajectories for lxl O-- 0 is discussed. A 

conjecture of Pickard concerning the zeros of F(x, s) is shown to be false. 

1. Introduction. Let s = a + it and z = x + iy be two complex variables. The 
Jonquiere function can then be defined by the infinite sum [1], [2] 

k0 (1) ~~~~~~F(z, s) = k (Izl < 1) 
k=l1 

or by the definite integral 

(2) (z, 

(a > O, -r < arg(l - z) < r; a > 1,z= 1). 

This function is a special case of the Lerch transcendent 
00 k 

(3) 1(z, S, s) = E k 

namely F(z, s) = zi(z, s, 1). The integral (2) is also called Bose-Einstein, or Fermi- 
Dirac integral, according to the values of z. 

These functions have been investigated by several authors, and theoretical results 
as well as references can be found in the relevant handbooks [1], [2]. In particular, 
asymptotic expansions of (2) are given by Dingle [3]. For certain special values of the 
parameters, these functions and some generalizations appear in several fields of 
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mathematics and applications, occasionally under different names. For instance, if s = n 
is a positive integer, one has the so-called polylogarithms (n-logarithms, or Spence func- 
tions): 

(4) Snz L ok1 flogn -2 ~ log(l - z~) dI 
(4) Sn(Z)-n (Z) in (Z) 

= 
El ke (n -2)! 

d . 

These functions, in particular for small values of n, have been investigated by several 
authors (for references, see Lewin [4]). They have been generalized in an important 
way in a little-known paper by Nielsen [5] at the beginning of this century. During the 
last few years, interest in the polylogarithms and the Nielsen functions Snp(z) has re- 
vived in two connections. On the one hand, there is the study of the functional relations 
which they satisfy, especially in relation to other fields of mathematics like group theory 
and geometry, e.g.,Wechsung [6] and in the book of Maier and Kiesewetter [7] for the 
polylogarithms. On the other hand, there is the importance of these functions in the 
theory of Feynman integrals in quantum electrodynamics, since they allow closed ex- 
pressions to be obtained for certain n-dimensional integrals over rational functions. 
These integrations are very involved but can be handled to a large extent by algebraic 
manipulation on a computer (see, for example, Maison and Petermann [8]). Problems 
relating the integration of rational functions and the polylogarithms are also treated by 
Wechsung [9]. A method for the numerical evaluation of a few Nielsen functions (and 
polylogarithms) for real x using Chebyshev expansions can be found in [10], and a 
method for computing S2(z) and S3(z) for complex argument with the help of contin- 
ued fraction expansions is given by Jacobs and Lambert [11] . Recently, Barlow [12] 
developed a method for computing Snp(z) for arbitrary complex z using continued frac- 
tion approximants. 

Our interest in the function F(z, s) lies in another direction. Since, for z = 1, 
F(z, s) is identical with the Riemann zeta function 

00 1 

(5) F(l, s) = (s) = k-Y (aJ >) 
k=1 

it would be interesting to know how the zeros of F(z, s), if there are any, approach the 
zeros of c(s) on the line a = ?2 as z - 1, if in fact they do. The problem of the zeros 
of F(z, s) has been raised by Pickard [13], who, a few years ago, investigated the func- 
tion F(z, s) for complex z and s, noting that but little information about these zeros is 
available. He stated that "as z - 0, the zeros are given by 

(6) s = 12 [logIzI + i arg z + (2p - 1)ri] 

and was "tempted to conjecture that all zeros in the complex (z, s)-plane lie on trajec- 
tories that lead to the line 
(7) a = (logIzI)/(log 2) 

as z 0 and the line a = 2 as z - 1". 
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It is the aim of this paper to show by theoretical considerations and numerical 
calculation that both the statement (6) and the conjecture (7) are erroneous. In fact, 
Pickard has revealed only a very small corner of the amazing and fascinating picture con- 
stituted by the zeros of F(z, s). 

In order to make the approach to the problem simpler, we restrict ourselves to 
real values of z, namely -1 < x < 1, y = 0, and leave the general case for possible fur- 
ther research. We therefore search for trajectories of F(x, s) = 0 in the complex s-plane, 
where x is a parameter along these trajectories. Further, it is sufficient to consider only 
the upper half plane t > 0. 

2. Asymptotes for the Zeros of F(x, s). In order to investigate the behaviour of 
the zeros of F(x, s) for x - + 0, we rewrite Eq. (1) as 

() N(X, S) -XN S XN-i + 
XN-2?? [(N? +1)INI s 

(8) NS (N/1)S (N/2)S2 

+ x s [(N + 2)/N] s - HN(x, S) + RN(X, S), 

where 

HN(x, s) = 1 + [(N+ 1)N]s 

(9) = 1 - expjN- log(l + I)s - 1/N) [log x ? (2P + 1)7ri]]} 

(P = 0, +1, +2, 
. . ). 

GN(x, s) has the same zeros as F(x, s), apart from x = 0. It is easily seen that the 

zeros of HN(x, s) are given for t > 0 by 

SO (X, log( + 1/A) [log x + (2P + 1)7ri] 

=U+(x,. N + iv+ (P, N) (N = 1, 2, 3, ***;P = O, 1, 2, ***) 

We note here that the formula (6) of Pickard corresponds to N = 1 and is, therefore, a 

special case of this formula. 

Our aim is now to show that, if x + 0, the quantity S+ (x, P, N) is an asymp- 
totic solution of F(x, s) = 0. For this purpose, we note flrst that the absolute value of 

term k in GN(x, s) for s = S+(x, P, N) is given by 

(11) Iterm kl = xk-N(N/k)u (x,N) = Xf(k,N) 

where 

(12) f(k, N) = k - N- log(k/1N) 
log(1 + 1/IN) 
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For fixed N, and as a function of k, it is easy to show that f(k, N) has the following 

properties: 

f(N, N) = f(N + 1, N) = 0, f(N- 1, N) > f(N + 2, N), 
(13) 

(d2/dk2)f(k, N) > 0. 
Therefore, it follows that 

(14) f(k, N) > eN > O (k 0 N, k N + 1) 

with 

(15) eN = f(N + 2,N) = 2 - log(l 2N) 

In addition, f(k, N) = 0(k)' for k c*. This leads to the conclusion that 

(16) [N(X, S)I = O(XEN) 

for s = go+ (x, P, N) and x + 0, independent of Im =v(P, N). In order to 
bound IRN(X, s)I from above uniformly in a strip around the line a = u+(x, N) exten- 

ding to, say, unit distance on either side of the line, we can proceed as follows. Since 

Iterm kl = xk-N(N/k)a, a change of up to ? 1 in the value of a can multiply the mag- 
nitude of the term by at most N/k or k/N, whichever is the larger. This does not affect 
the uniform convergence O(xEN) as x ) 0 of the sum IRN(X, s)I in the infinite strip. 
We now make use of the following lemmas: 

LEMMA 1. Given any e, 0 < e < 27r, there exists an iq > 0 such that les 1 1 >77 

for all complex s on the circle IsI = e. In particular, we can choose r7 such that 

lime-0(tI/6) = 1. 
LEMMA 2 (RoUCHE). If f and g are regular analytic functions in a simply con- 

nected and bounded region G, and if f / 0 and If I > Igi on a closed path r completely 
inside G, then f and f + g have the same number of zeros inside r. 

We choose a small e > 0, where e < log(l + 1/N). According to Lemma 1, 
there exists an 71 such that IHN(x, s)I > s1 if s satisfies 

log(l + 1/N) s ( 1 [log x + (2P + 1)7ri] =e. 
lgl+ 1/IN) 

If x now is chosen so small that [RN(X, s)I <sq in the strip, then, according to Lemma 
2, GN(x, s) = HN(x, s) + RN(X, s), and thus F(x, s) has one zero at most at the distance 
e/log(l + 1/N) from go+(x, P, N). Since we could choose e arbitrarily small, this 

proves the existence of asymptotes for the zeros when x - +0. To each N = 1, 2, 
3, .. and each P = 0, 1, 2, .. there corresponds one zero given by Eq. (10). 

Using 7 = e + 0(1), we find that the distance of the zero of F(x, s) to &^ (x, P, N) 
is of the type const - xEN, where the constant depends on N but not on x. 

From Eq. (10), we see that the lines 

(17) t = v+(P, N) = (2P + 1)7r/log(l + 1/N), 
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which are parallel to the real axis t = 0, are asymptotes for the zeros sO+(x, P, N) of 

F(x, s) in the case x e +0. By considerations similar to those given above, one can 

find that, in the case x -0, the zeros of the corresponding function 

(18) HN(X, S) = 1 - lxl/[(N + 1)/N]S 

in the upper half plane t > 0 are given by the expression 

S^ - 
(x, P, N) = 1 (log lxl 

? 
2P?i), 0(x ~ 

)=log(l 
? 1/N) 

(19) 
(N = 1, 2, 3, P **;= 1, 2, 3,**) 

and that the asymptotes of the zeros s -(x, P, N) of F(x, s) for -1 < x < -0 are 

characterized by 

(20) t = v-(P, N) = 2P7r/iog(l + 1/N). 

3. Numerical Computation of the Zero Trajectories of F(x, s). The numerical 

computation of the zeros of F(x, s) was made in double-precision mode (about 28 

digits) on a CDC 7600 computer. It was found that straightforward use of the defining 

sum (1) was convenient for most of the cases. The summation was carried until the 

modulus of a term became smaller than 10-30. We started the computation at aparam- 

eter value x = x' for given values of P and N and took the value s^O(x', P, N) as an 

approximation to the zero so(x', P, N) of F(x, s). This value was then refined with a 

Newton method [14] to at least five decimals, and the value thus obtained was taken 

as an approximation for so(x' + Ax, P, N), and so on. It was found that the choice 

(21) x' = 0N-N-2; Ax = min(10[lgx-x-lI, 0.01), 

where [f] is the integer part of #, led in most cases to an efficient and stable computa- 

tion along the trajectories giving, in addition, convenient values for x. In regions where 

the behaviour of the trajectories was found to be complicated, much smaller values of 

Ax were used. For N > 9, it became more and more difficult to start with x' = 

10-N- 2, and the trajectories were calculated backwards starting near a zero of c(s). 

With these methods, the trajectories were computed without great difficulties up to 

lxl = 0.96. In the imaginary direction of the s-plane, we restricted the calculation ar- 

bitrarily to 0 < t < 110. 

4. The Results. We first described the results for the case +0 < x < 1. Here we 

found two distinct classes of trajectories, characterized by their behaviour for x- 1. 

One class does not approach the zeros of c(s) on the line a = ?, but tends directly 

towards the point s = 1. We computed seven of these trajectories and found that they 

belong to asymptotes having P = 0, N = 1, 2, - - *, 7. They are shown in Fig. 1, giving 

a very regular picture. Although it is advisable to be very careful in formulating con- 

jectures in the matter treated here, we believe that this class is characterized by P = 0, 
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and that all the curves s+(x, 0, N) will be found to belong to it. It is, however, prob- 
able that the regular picture will be destroyed when these trajectories pass, for large N, 
near a zero of c(s). 

The other class is characterized by the fact that all the computed trajectories very 
closely approach a zero of c(s) on the line a = % as x - 1 - p for small values of 

p > 0. These curves are shown in Fig. 2, plotted as full (unbroken) lines. (The be- 

haviour of the trajectories for p O 0 is discussed in Section 5.) The zeros sm of t(s) 
are taken from Haselgrove and Miller [15]. The picture presented by this class is com- 

plicated and becomes more and more involved for increasing imaginary part t. Never- 

theless, some of the curiosities are especially worth mentioning. One notices immediately 
the tongs-like shape of those trajectories which approach zeros of c(s) which are not 

very far from each other (for example, s4 and s5, S7 and s8, s9 and s O, s13 and s14, 
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etc.). Further, one finds, at least in the lower part of the region considered, a curious 

"paired" behaviour of trajectories having P and N interchanged, e.g. the pairs s+ (x, 1, 3) 

and s+(x, 3, 1), s+(x, 1, 7) and s+(x, 7, 1), etc., in particular, s+(x, 2, 5) and 

s+(x, 5, 2), s+(x, 1, 9) and s (x, 9, 1), but also, in a different way, s+(x, 2, 3) and 

s+(x, 3, 2). The asymptotes of these curves are often quite distant from each other, 

but eventually (outside the picture) these curves separate and approach their asymptotes 

for x +0. Figure 3 shows such behaviour for s+(x, 1, 8) and s+(x, 8, 1). On the 

other hand, trajectories with P = N are isolated, like so (x, 1, 1), s+(x, 2, 2), so (x, 3, 3). 

Since there can be no interchange of P and N when P = 0, the exceptional behaviour 

of the trajectories s+(x, 0, N), as described above, seems more plausible. 
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For large P and N, we see from (17) that 

v+(P, N) ? Y2(2N + 1)(2P + 1)Tr v+(N, P), 

which means that two asymptotes, with P and N interchanged, become quite close to 

each other. However, this does not necessarily mean that the corresponding trajectories 

have a similar behaviour as they advance through the s-plane or that they approach 

neighboured zeros sm. For instance, v+(3, 4) = 98.55 and v+(4, 3) = 98.28 differ by 

0.27 only, whereas the zeros s26 = 92.49 and s3l = 103.73, which are approached by 

s+(x, 4, 3) and s+(x, 3, 4), respectively, have a much larger distance from each other. 

Looking at the trajectories which pass near zeros of c(s) which are not far from 

each other, one notices a certain "indecisive" behaviour of some of these curves, as if 

the zeros, of c(s) are trying to "attract" the trajectories. This can lead to very sharp 

bends, as for instance for s+(x, 3, 1). Figure 4 shows a close-up of this curve near the 

bend. 
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It is obvious that the behaviour of the trajectories becomes more and more com- 
plicated the higher one goes in the s-plane. In particular, there seems to be no way of 
predicting from P and N the ordinal number m of the zero Sm of i(s) which is ap- 
proached by the trajectory sO7 (x, F, N), even if there is a one-to-one correspondence 
between zeros sm and trajectories coming from asymptotes v+ (F, N) which is, of course, 
an open question. Up to S33, how ever, all zeros of c(s) are approached by exactly one 
trajectory sO (x, F, N), and we computed all trajectories belongig to the asymptotes 
u+(P, N) ? 110. 

For the case -0 > x > -1, the trajectories are the broken curves in Fig. 2. 

Suct ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~* 

(22) (1 - 21-s)?(s) = E k' (a0>0 ), 

k=1 kS3 



COMPLEX ZEROS 59 
I t ~ 59 

-80 -80 

111 _. _ 26 __8 7 2 5/12-_ 0. 

8/ .01i 0.001 0.01 05 
3/3- 512 

58/11-o 5/ - 52 5 S -75-7 

d1/17 -0.00 - 8 
01 

_"S18 

1/7 
2/4 70 4/= 

4/ - 2/ 5 4/ 
7/1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 

7/l5-z - 21405 7/ 8 

1/0 - -- ?__<-1 

-65--- 5 P/N 

7/1-; 
- 

oo 0. 01 05-g 

0.001 ~0.01 6 

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 

FIG.2 (cont.) 

one might expect that, as x -~ 1, some of these trajectories would terminate at the 
equidistant points 

+l27 ?9.06472mi (m= 1,02,**, 

which are the zeros of ?(s) = 1 - 21 0. This is, indeed, the case. On the other hand, 
there are also trajectories which approach the zeros of p(s). Therefore, here again we 
have two classes of trajectories. 

It is remarkable that, of all the computed trajector-ie& sO (x, P, N), only those with- 
n = 1 tend to a zero 4. In fact, the trajectories s(x, P, 1), P = 1, 2, , 12, ap- 
proach the corresponding p. In addition, we see that 

(24) Im sp = v(P, 1) = 2Po/glog 2) 
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which means that the asymptotes v-(P, 1) have, for all P, the same ordinate t as the 
zeros of ?(s). Therefore, again with the necessary caution, we conjecture that all tra- 
jectories s0 (x, P, 1) will approach the corresponding zeros sp1. The remaining trajec- 
tories, corresponding to -1 < x < -0, approach zeros of p(s), often in a smoother way 
than in the case +0 < x < 1. For P and N interchanged, there is no behaviour similar 
to the s0 (x, P, N), although "pairs" and "tongs" are also present. A very interesting 
case is s0-(x, 2, 8), which, after having directed itself towards S33, bends with a sharp 
loop to s32. A close-up view is shown in Fig. 5. As for the case +0 < x < 1, all the 
zeros of c(s) up to S33 are approached by exactly one trajectory s0-(x, P, N). One 
should note that the trajectory s0-(x, 1, 18) has its asymptote v-(l, 18) = 116.21 out- 
side the figure and that the trajectory s0-(x, 7, 2), coming from v-(7, 2) = 108.47, 
approaches an Sm with t > 110 outside the figure. 

In order to test our calculations, we applied the well-known theorem 

(25) Z(x)= o; r5 --ds 
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giving the number Z(x) of zeros of F(x, s) inside a closed contour C. The integral was 
evaluated by numerical integration with an adaptive Gaussian quadrature procedure 
[16] . We found Z(0.1) = 27 in the rectangle (0, 110i, - 11 + 110i, - 11) and 
Z(- 0.1 ) = 26 in the rectangle (i, 109i, - 1 1 + 109i, - 1 1 + i). These values agree 
with the numbers of computed zeros found in these rectangles (see Fig. 2). 

5. Trajectories for x Very Close to One. In this section, we present some heuristic 
arguments concerning the behaviour of the trajectories s0 (x, P, N) as x -*1. 

We shall use the formula [1] 

(26) F(x, s) = F(6 - s)(- log x)s2 1 + (s) + E x- 

to study the behaviour of the zeros of F(x, s) as x -*1, especially those which, for 
x 1 - p, initially approach the nontrivial zeros of (s). As an example, we take the 

behaviour of F(x, s) near s1. When x -*1, the sum in (26) becomes negligible as 
compared to c(s), and the zeros of F(x, s) therefore arise effectively from the cancella- 
tion between c(s) and the term 

(27) 'I'(x, s) = F(1 - s)(- log x)s 1 = F(1 - s)exp[(s - l)log(- log x)]. 
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Since Ir(1 - s)t, in the neighbourhood of the first nontrivial zero s 1 % + 14.134725i 
is of the order 10- 10 (and decreases strongly for an increasing imaginary part of s), 

T(x, s) is also small near s1 for x less than, say, 1 - 10-8. This term has therefore 

essentially no effect on the zero of F(x, s) in the neighbourhood of s, . When x is even 

closer to one, log(- log x) decreases to - oo. Near sl, the function T(x, s) increases 

exponentially from a very small value; and the phase rotates with an angle proportional 
to log(- log x). The zero [i.e., the point where this term cancels c(s), which has a sim- 

ple zero at s1 ] therefore starts to rotate in an exponential spiral around s1 . 
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To see what happens when x approaches one even more closely, we divide (26) by 

r(1 - s). Again ignoring the sum in (26), we study the points where - t(s)/r(l - s) is 

equal to exp[(s - 1) log (- log x)] . For x - 1, lexp [(s - 1) log(- log x)] I tends to 

infinity at every point s for which Re s < 1 and tends to zero for those having Re s > 1. 

The curve along which - t(s)/r(l - s) (which is a regular function for s = 1) and 

exp [(s - 1) log(- log x)] agree in magnitude thus approaches the line Re s = 1. [Al- 

though - t(s)/F(l - s) is zero for s = 2, 3, 4, * * *, F(x, s) has no zeros in the neighbour- 

hood of these points. The poles of r(1 - s) are cancelled by the poles of t(s - n) in 

the sum on the right-hand side of (26),] Along this curve, tending to Re s = 1, the 

phase of - t(s)/r(l - s) varies slowly, relative to the phase of exp [(s - 1)log(- log x)], 
and F(x, s) has zeros when the phase of - t(s)/F(l - s) agrees with the phase of 

exp [(s - 1 )log(- log x)] . This occurs at almost equidistant points [asymptotically 

spaced at distance 2ir/tlog(- log x)I] all tending to Im s = 0, and thus tending to s = 1 

when x - 1. 

The explanations given in the above paragraph for the behaviour near s = 1 are 

also valid for those trajectories which tend directly to s = 1. 
Near s = 1, the zero trajectories s (x, 0, N) were computed in the following way. 

The method described in Section 3 was used up to x = 0.98. For 0.98 < x < 1 - 

10-10, the functional equation 

(28) F(x, s) = 21-sF(X2, s) - F(- x, s) 
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was applied. The series F(- x, s) can be summed by means of the Euler transformation 
[17]. Convergence is then achieved essentially from the fact that l/ks behaves smooth- 
ly as a function of k and not so much from the additional factors xk. The problem of 
calculating F(x, s) for x close to one is thus reduced to the calculation of F(x2, s), i.e., 
the same problem with a smaller argument x. This recursion was used until the value 
of x by successive squarings had decreased below 0.5, when a direct summation was 
done. For example, in the case of x = 1 - 10-10, this required 33 steps in the re- 

cursion. 

For the first trajectory N = P = 1, we investigated numerically the behaviour 
near the point s1, setting x = 1 - 10'. Up to a = 10, the recursion method (28) 
was used, and, for oa > 10, formula (26) was used, ignoring the sum term. Figure 6 
shows how the trajectory s+(x, 1, 1) initially approaches sl and later leaves it in the 
way described above. The figure also shows three other zero trajectories which pass 
close to sl and join s+(x, 1, 1) on its way to s = 1. The small rectangle at the centre 
of the spiral in Fig. 6 encloses the region which is shown on an enlarged scale in Fig. 7. 

For x - -1, in view of the convergence of the series (1) for Re s = a > 0 and 
x = -1, we believe that the trajectories s- (x, P, N) actually converge to s or sI 

6. Trajectories Corresponding to the Trivial Zeros of c(s). The function c(s) has, 
apart from the zeros in the strip 0 < a < 1, so-called trivial zeros at the points 

(29) si =-2m (m = 1, 2, 3, ). 

These zeros are approached by trajectories s-(x, 0, N) = u-(x, 0, N) lying on the real 
axis. There are no trajectories s (x, P, N) going to the trivial zeros. 

7. The Number of Asymptotes. It is well known [18] that the number N(T) of 
zeros sm of c(s), for which t lies in the interval of 0 < t S T, can be expressed for 
T oo by 

(30) N(T) = T 
log T- 

+ log 27r T + R() 

where R(T) = O(log 1). Since it was found that the first 33 zeros sm could be assigned 
to corresponding asymptotes v+(P, N) and v-(P, N), it would be interesting to know 
the number of asymptotes in the interval 0 < t S T for T - co. As was mentioned in 

Section 4, the imaginary part of a zero sm which is approached by a trajectory 

so(x, P, N) may differ considerably from the t value of the corresponding asymptote 

v(P, N); so one cannot necessarily expect a formula identical to that for N(T). 

It follows from (17) that the problem of finding the number A+(l) of asymptotes 
V+(N, P) in 0 < t < T is equivalent to counting the number of lattice points in the 

region (P > 1, N > 1) which lie below or on the curve 

(31) NT(P)= {exp (2P +1)_ 1 
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or, equivalently, which lie on the left-hand side of, or on, the curve 

(32) PT(N) = (T/27T) log(l + 1/N) - 'h. 

Therefore, following an idea of Hardy and Wright [19], we can write 

P* N* 

(33) A+ (7= [NIT(P)]? + [PT(N)V P*N*, 
P=1 N=1 

where P* = [Tl/21 and N* = [NT(P*)], and [t] is the integer part of t. If we are sat- 

isfied with an expression for A+(7) which is, for T - oo, correct up to O(Tl/2), we can 

proceed in the following way. Because of the fact that 

(34) p* /2 + 0(1) and N* = t/2/27T + 0(1), 

we get 

(2?1* -T N*loj N / l ) 

() P=l { T } i 2FN= 1 ( N) 27r ( 

(35) 
TP* 1 TT 
ff ?El2P 27log(N* + 1) - (T+ ). 7i 

:2+1 2I+ r' 7 

Using the well-known formula [20], 

(36) E Z = -1 + 2-y + - log n + log 2 + O(n-) ), 
k= 

where y = 0.577216 is Euler's constant, and the relations (34), we finally obtain 

(37) A+(T) = T log T- 3 + log 27r 2 log 2 - y T + O(T/2) (T oo). 

Similarly, one finds for the number A-(7) of asymptotes v-(P, N) (P > 1, N > 2), in 

the interval 0 < t < T, the expression 

(38) A-(T) = T log T 1 + log 2r + log2 -y T + O(T/2) (T o). 
2ir 2ir 

Comparing (37) and (38) with the expression (30) for N(T), we see that, for large 

T, there are in both cases more zeros sm than asymptotes in the interval 0 < t < T, 

the excess being proportional to T, namely 

(39) N(T) - A (T) = o+ T + O(T/2), 

where 

(40) a+ - 2 -2 log 2 - - 0.00580756, a = log 2- y = 0.01845107. 
27r 2ir 

In order to get an idea of the magnitude of the O(Tl/2) term, we carried out a computer 

calculation of the numbers A + (T) and A - (T) for T = 1 0', j = 1(1) 1 2. It was found 

that the computed values of a+ and a- converge for increasing j, and that for T = 1012 
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they agree, to eight decimal places, with the values (40). It should be noted that P = 
0 is not counted for A+(T), and that N = 1 is not counted for A-(), for the reasons 
described in Section 4. The inclusion of these asymptotes would lead to values 

(41) = 2 log 2 + y = -0.3125023, a- = - = -0.0918667, 
27T 27T 

which have the opposite sign and are larger in magnitude than those obtained in (40). 
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